Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks.

نویسندگان

  • Jiankang He
  • Ye Wang
  • Yaxiong Liu
  • Dichen Li
  • Zhongmin Jin
چکیده

A three-dimensional (3D) microfluidic network plays an important role in engineering thick organs. However, most of the existing methods are limited to mechanically robust synthetic biomaterials and only planar or simple microfluidic networks have been incorporated into soft natural biopolymers. Here we presented an automatic layer-by-layer micromolding strategy to reproducibly fabricate 3D microfluidic porous scaffolds directly from the aqueous solution of soft natural biopolymers. Process parameters such as the liquid volume for each layer and contact displacement were investigated to produce a structurally stable 3D microfluidic scaffold. Microscopic characterization demonstrated that the microfluidic channels were interconnected in 3D and successfully functioned as a convective pathway to transport a polymer solution. Endothelial cells grew relatively well in the porous microfluidic channels. It is envisioned that this method could provide an alternative way to reproducibly build complex 3D microfluidic networks into extracellular matrix-like scaffolds for the fabrication of soft vascularized organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Homogeneous, Two and Three Lattice Layers Scaffolds with Constant Density

Advances in the additive manufacturing technology have led to the production of complex microstructures with unprecedented accuracy and due todesigning an effective implant is a major scientific challenge in bone tissue regeneration and bone growth. In this research, titanium alloy cylindrical scaffolds with three-dimensional architectures have been simulated and compared for curing partial bon...

متن کامل

Fabrication of Poly(ε-Caprolactone), Hydrophilic and β-Tricalcium Phosphate Layer- by -Layer Nanofibrous Scaffolds for Tissue Engineering

In this study, using biodegradable polymers, nanofiberouse scaffolds were fabricated from the layer-by-layer electrospinning method, including two layer that poly (ε-caprolactone), polyvinylpyrrolidone deposited at first layer and poly (ε-caprolactone), polyvinyl alcohol , β-tricalcium phosphate at latter. After prepration of scaffolds, scanning electron microscopy (SEM), swelling, porosity, me...

متن کامل

Multilayer micromolding of degradable polymer tissue engineering scaffolds

Precise surface geometrical morphologies have been shown to improve cellular proliferation, adhesion, and functionality. It has been found that cells respond strongly to feature dimensions a fraction of their size. In this paper, soft lithography techniques were applied to microfabricate polydimethylsiloxane molds with precisely controlled micro-scale patterns. Three-dimensional polycaprolacton...

متن کامل

Displacement Fields Influence Analysis Caused by Dislocation Networks at a Three Layer System Interfaces on the Surface Topology

This work consists in a numerically evaluation of elastic fields distribution, caused by intrinsic dislocation networks placed at a nanometric trilayers interfaces, in order to estimate their influence on the surface topology during heterostructure operation. The organization of nanostructures is ensured by the knowledge of different elastic fields caused by buried dislocation networks and calc...

متن کامل

Optimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network

In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as  amount  of  flow  intensity  ratio,  temperature,  residence  time,  and  pH  are  used  as  input  variables  of  the network,  whereas  the  extraction  yield  is  considere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biofabrication

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2013