Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks.
نویسندگان
چکیده
A three-dimensional (3D) microfluidic network plays an important role in engineering thick organs. However, most of the existing methods are limited to mechanically robust synthetic biomaterials and only planar or simple microfluidic networks have been incorporated into soft natural biopolymers. Here we presented an automatic layer-by-layer micromolding strategy to reproducibly fabricate 3D microfluidic porous scaffolds directly from the aqueous solution of soft natural biopolymers. Process parameters such as the liquid volume for each layer and contact displacement were investigated to produce a structurally stable 3D microfluidic scaffold. Microscopic characterization demonstrated that the microfluidic channels were interconnected in 3D and successfully functioned as a convective pathway to transport a polymer solution. Endothelial cells grew relatively well in the porous microfluidic channels. It is envisioned that this method could provide an alternative way to reproducibly build complex 3D microfluidic networks into extracellular matrix-like scaffolds for the fabrication of soft vascularized organs.
منابع مشابه
Numerical Simulation of Homogeneous, Two and Three Lattice Layers Scaffolds with Constant Density
Advances in the additive manufacturing technology have led to the production of complex microstructures with unprecedented accuracy and due todesigning an effective implant is a major scientific challenge in bone tissue regeneration and bone growth. In this research, titanium alloy cylindrical scaffolds with three-dimensional architectures have been simulated and compared for curing partial bon...
متن کاملFabrication of Poly(ε-Caprolactone), Hydrophilic and β-Tricalcium Phosphate Layer- by -Layer Nanofibrous Scaffolds for Tissue Engineering
In this study, using biodegradable polymers, nanofiberouse scaffolds were fabricated from the layer-by-layer electrospinning method, including two layer that poly (ε-caprolactone), polyvinylpyrrolidone deposited at first layer and poly (ε-caprolactone), polyvinyl alcohol , β-tricalcium phosphate at latter. After prepration of scaffolds, scanning electron microscopy (SEM), swelling, porosity, me...
متن کاملMultilayer micromolding of degradable polymer tissue engineering scaffolds
Precise surface geometrical morphologies have been shown to improve cellular proliferation, adhesion, and functionality. It has been found that cells respond strongly to feature dimensions a fraction of their size. In this paper, soft lithography techniques were applied to microfabricate polydimethylsiloxane molds with precisely controlled micro-scale patterns. Three-dimensional polycaprolacton...
متن کاملDisplacement Fields Influence Analysis Caused by Dislocation Networks at a Three Layer System Interfaces on the Surface Topology
This work consists in a numerically evaluation of elastic fields distribution, caused by intrinsic dislocation networks placed at a nanometric trilayers interfaces, in order to estimate their influence on the surface topology during heterostructure operation. The organization of nanostructures is ensured by the knowledge of different elastic fields caused by buried dislocation networks and calc...
متن کاملOptimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biofabrication
دوره 5 2 شماره
صفحات -
تاریخ انتشار 2013